Performance & Scalability
Azu is designed for high-performance web applications with built-in optimizations for speed, memory efficiency, and scalability. This section covers performance characteristics, optimization strategies, and scaling patterns.
Overview
Azu's performance features are designed for:
High throughput request handling
Low latency response times
Memory efficiency with minimal allocations
Horizontal scaling across multiple servers
Real-time performance for WebSocket applications
Performance Characteristics
Key Performance Features
1. Compile-time Optimizations
Type-safe routing with zero runtime overhead
Inline template compilation
Dead code elimination
Optimized memory layouts
2. Runtime Optimizations
Connection pooling for databases
Response caching strategies
Gzip compression
Static file serving
3. Real-time Performance
Efficient WebSocket handling
Minimal memory allocations
Background job processing
Event-driven architecture
Benchmarks
Azu demonstrates excellent performance characteristics:
Request Throughput
Static file serving: 50,000+ requests/second
JSON API responses: 30,000+ requests/second
Template rendering: 20,000+ requests/second
WebSocket connections: 10,000+ concurrent connections
Memory Usage
Base memory footprint: ~15MB
Per request overhead: <1KB
WebSocket connection: ~2KB per connection
Template cache: Configurable, typically 10-50MB
Latency
Static file response: <1ms
JSON API response: <5ms
Template rendering: <10ms
Database query: <20ms (with connection pooling)
Optimization Strategies
1. Application-level Optimizations
Response Caching
struct CachedUserEndpoint
include Endpoint(UserRequest, UserResponse)
get "/users/:id"
def call : UserResponse
cache_key = "user:#{params["id"]}"
if cached = cache.get(cache_key)
return UserResponse.from_cache(cached)
end
user = find_user(params["id"])
response = UserResponse.new(user)
cache.set(cache_key, response, ttl: 300) # 5 minutes
response
end
end
Database Optimization
struct OptimizedUserEndpoint
include Endpoint(UserRequest, UserResponse)
get "/users/:id"
def call : UserResponse
# Use connection pooling
DB.with_connection do |conn|
# Optimized query with proper indexing
user = conn.query_one(
"SELECT id, name, email, created_at FROM users WHERE id = $1",
params["id"],
as: {Int32, String, String, Time}
)
UserResponse.new(user)
end
end
end
2. Template Optimization
Fragment Caching
class UserListComponent < Azu::Component
def content
div class: "user-list" do
users.each do |user|
# Cache individual user fragments
cached_fragment "user:#{user.id}" do
render_user_card(user)
end
end
end
end
end
Template Precompilation
# Precompile templates in production
Azu::Templates.precompile_all! if production?
3. Static Asset Optimization
CDN Integration
# Configure CDN for static assets
Azu::Configuration.configure do |config|
config.cdn_url = "https://cdn.example.com"
config.static_assets = {
"js" => "https://cdn.example.com/js",
"css" => "https://cdn.example.com/css",
"images" => "https://cdn.example.com/images"
}
end
Asset Compression
# Enable gzip compression
Azu::Configuration.configure do |config|
config.gzip_enabled = true
config.gzip_level = 6
config.gzip_types = ["text/html", "text/css", "application/javascript"]
end
Learn more optimization strategies →
Scaling Patterns
1. Horizontal Scaling
Load Balancing
# Configure for load balancer
Azu::Configuration.configure do |config|
config.trust_proxy = true
config.forwarded_headers = ["X-Forwarded-For", "X-Forwarded-Proto"]
end
Session Management
# Use Redis for session storage
Azu::Configuration.configure do |config|
config.session_store = :redis
config.redis_url = ENV["REDIS_URL"]
end
2. Database Scaling
Read Replicas
struct ScalableUserEndpoint
include Endpoint(UserRequest, UserResponse)
get "/users/:id"
def call : UserResponse
# Use read replica for GET requests
user = ReadReplicaDB.query_one(
"SELECT * FROM users WHERE id = $1",
params["id"]
)
UserResponse.new(user)
end
end
Connection Pooling
# Configure connection pools
DB.configure do |config|
config.pool_size = 20
config.max_retries = 3
config.retry_delay = 0.1
end
3. Background Processing
Job Queues
class EmailJob < Azu::Job
def perform(user_id : Int32)
user = User.find(user_id)
EmailService.send_welcome_email(user)
end
end
# Enqueue background job
EmailJob.enqueue(user.id)
Monitoring Performance
1. Application Metrics
Request Monitoring
class PerformanceMiddleware < Azu::Handler
def call(request, response)
start_time = Time.monotonic
call_next(request, response)
duration = Time.monotonic - start_time
Log.info { "Request to #{request.path} took #{duration.total_milliseconds}ms" }
end
end
Memory Monitoring
# Monitor memory usage
GC.collect
memory_usage = GC.stats.total_allocated
Log.info { "Memory usage: #{memory_usage / 1024 / 1024}MB" }
2. Database Performance
Query Monitoring
# Enable query logging
DB.configure do |config|
config.log_queries = true
config.slow_query_threshold = 100 # ms
end
Connection Pool Monitoring
# Monitor connection pool
pool_stats = DB.pool_stats
Log.info { "Active connections: #{pool_stats.active}" }
Log.info { "Available connections: #{pool_stats.available}" }
Performance Best Practices
1. Code Optimization
Use
String.build
for string concatenation in loopsPrefer
#try
over explicit nil checksUse
spawn
for background tasksMinimize object allocations
2. Database Optimization
Use proper indexes on frequently queried columns
Implement query caching for expensive operations
Use connection pooling
Consider read replicas for scaling
3. Template Optimization
Cache frequently used templates
Use fragment caching for expensive template parts
Precompile templates in production
Minimize database queries in templates
4. Asset Optimization
Use CDN for static assets
Enable gzip compression
Minify CSS and JavaScript
Use asset versioning for cache busting
Next Steps
Detailed Benchmarks - See performance numbers
Optimization Strategies - Learn optimization techniques
Scaling Patterns - Scale your application
Real-time Performance - Optimize WebSocket applications
Examples
Check out the playground examples for complete working examples of:
Caching strategies
Database optimization
Background job processing
Performance monitoring
Ready to optimize your application? Start with Optimization Strategies to learn techniques for improving performance, then explore Scaling Patterns for handling high traffic.
Last updated
Was this helpful?